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Abstract

To better understand human intelligence, we must first understand how humans use
and learn from stories. One important aspect of how humans learn from stories is
our ability to reason about cause and effect.

Psychological evidence suggests that when children develop the ability to learn
cause-and-effect relationships from stories, they do so in discrete stages where each
new stage enables the child to incorporate new kinds of information. In this thesis,
I attempt to shed light on the mechanisms that underlie the development of causal
reasoning in children. I create a behavior-level model, an explanatory theory, and
an explanation-level model that account for the developmental stages. I implement
these models on top of the Genesis Story Understanding System. The result is a
psychologically plausible explanation-level model that captures the observed causal
reasoning behaviors of children at different stages of developments. The model also
takes the observations from psychological evidence to another level by proposing
mechanisms that enable such development in children.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science
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Chapter 1

Introduction

1.1 Vision

If we are to understand human intelligence, we must first understand how we humans

understand and reason about stories. Stories and symbolic knowledge are a distinc-

tive and essential part of human intelligence. Dating back nearly 35,000 years ago,

there is evidence of symbolic representations in the form of cave paintings [8]. These

paintings are the earliest that have been found, and the fact that they exist shows

that the building blocks of symbolic thought were in place. These building blocks en-

abled the process of creating lasting ways of conveying information; a form of telling

stories through symbols. This uniquely human trait of symbolic knowledge and rep-

resentation is, in essence, a means of telling stories to ourselves and to each other. In

order to truly understand human intelligence, we must first understand how humans

use and learn from stories [15]. Because an essential part of story understanding is

causal reasoning, we must understand how we reason about cause and effect.

In this thesis, I propose a cognitive theory and corresponding humanly-plausible

model of how a particular aspect of causal reasoning develops in children.

11



1.1.1 Why Causal Reasoning?

Causal reasoning and understanding is a necessary skill in daily life. There is often

sparse information presented for which we need to provide the missing links. For

example, answering why and how questions like, “why is my friend upset?” requires

causal reasoning. When examining a patient, doctors are often searching for an ex-

planation or cause of the symptoms that the patient presents. Detectives are required

to piece together the causes and chains of events within crime scenarios. When we

read, we are often called upon by authors to infer how one event leads to another in

order to understand stories. And children are constantly confronted with new world

experiences through which they need to learn causal relations in order to understand

how our world works. Causal reasoning is an absolutely essential skill that we use to

understand the world around us.

We can better understand causal reasoning by understanding how it develops in

children. This way, rather than study the fully developed behavior, we can study

the building blocks, the underlying mechanisms, as they develop. There is significant

interest among psychologists and cognitive scientists in trying to understand how

causal reasoning develops. One way that Gweon and Schulz studied the development

of causal reasoning is by investigating whether children can infer causes based upon

evidence they have seen [4]. They found that children as young as 16 months old can

use some basic statistical evidence in order to infer the cause of an event.

However, as the causal reasoning task becomes more complex this ability disap-

pears [10]. For example, when domain-specific knowledge is introduced into causal

inference scenarios, three-year-old children ignore the statistical evidence presented

to them [10]. Given this information, it stands to reason that there must be some-

thing more than just statistical calculations alone going on in our brains when we are

tasked with causal reasoning deductions. Moreover, while one may be still be able

to model this behavior with a statistical model, I think it is important to question

whether children, or humans in general, are best modeled as a form of statistician.

With this in mind, I believe that it is important that, when modeling causal reasoning

12



behaviors, the underlying model is more than a just statistical calculation in order to

make the model meaningful.

It is with this philosophy in mind that my thesis was developed:

In order to understand human intelligence, we must first understand how we

develop our causal reasoning capabilities; a good first step towards this understanding

is developing a psychologically plausible model for this behavior. The model must

not only describe behavior, but explain it.

1.1.2 Psychological Plausibility

In order for a computational model to be “psychologically plausible”, the model must

be:

1. Explanatory

2. Compositional

3. Sensible

These three traits, as I describe below, capture important criteria for a theory to

be a “good explanation” [11] of a phenomenon.

Explanatory

When I say that a model should be explanatory, I mean that the model should be

able to, in some manner, describe how it came up with the results that it produced.

For example, if a doctor were to diagnose a patient, they would be able to describe

the steps that they took in order to produce the diagnosis. An inferior model would

simply produce the same diagnosis as the doctor in this example, but a better model

would be able to explain itself the way people do. Even when people don’t really

know the answer to a causal reasoning question, they will take guesses and explain

themselves [7]. In order to reach human-like intelligence, our models should have the

same capability.
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Compositional

Compositionality helps support the explainability of a system. Essentially, a compo-

sitional model would be made up of different, well defined parts, determine how they

fit together, and how the behavior of the whole emerges from the behavior of the

individual pieces. If we have a model that exhibits these properties of composition-

ality, then we can test the individual parts of the model as well as the whole.What I

mean to say is that a compositional model supports a divide and conquer approach

to testing a theory. This kind of a model is necessary in order to be psychologically

plausible because these models are trying to describe a theory of a mechanism for

what might be happening in our minds, rather than just a description of the resulting

behavior. Descriptive models may produce correct behavior, but they do not shed

any light on what is happening under the hood.

Sensible

Essentially, what I mean by a sensible model here is that the model must not only

produce the desired behavior, but it should also suggest a scientifically plausible mech-

anism for the behavior or how that behavior emerges from a particular architecture

or well-understood parts. By a scientifically plausible mechanism, I mean to say that

the model operates under humanly-realistic constraint. Model building should not

simply be an exercise in engineering, but should be a scientific endeavor to create a

model that explains a phenomenon.

This goes hand in hand with the explanatory requirement. A psychologically

plausible model should be a model designed with some backing in a cognitive, psy-

chological, or otherwise relevant scientific theory. By having a design driven by solid

scientific theories, we can produce a model that is scientifically relevant, explainable,

and falsifiable. A good model should not only produce proper answers where humans

succeed, but should also fail where humans fail. In this sense it somewhat relates to

being explanatory, so that we can see if it fails in the same way(s) as humans do for a

particular task. It is in the realm of sensibility that purely statistical models run into
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some problems. While statistical models may be able to capture the desired behavior,

they do little to explain what is happening [3], and they often exhibit super-human

capabilities.

In summation, these are the three traits required for a model to be psychologically

plausible.

In this thesis, I have developed a model that is psychologically plausible in that

it is exaplanatory, compositional, and sensible.

1.1.3 A Model for Computational Psychology

I intend for this thesis to serve as one possible model for how to create computational

models of psychological phenomena.

The main point I would like to make here is that any good computational model of

a psychological phenomenon (or even for a more broad spectrum of scientific phenom-

ena) should be more than just a system that produces the same or similar behavior.

It should be a system that also strives to function in an analogous way to the phe-

nomema you are trying to model, or the theory you are trying to model. In essence,

any good computational model for these endeavors should try to encompass the three

properties I discussed as part of a psychologically plausible model. I believe that this

a good way to structure and design scientifically sound computational models.

1.2 Approach

In this thesis, I tackle the problem of how children develop causal reasoning capabil-

ities and why they initially fail when that reasoning involves domain-specific knowl-

edge. Using a story-based framework, I recreate aspects of a psychological study by

Schulz et al. [10] and take it to another level with a computational implementation

that is explanatory, compositional, and sensible.
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1.2.1 Why stories?

In order to understand human intelligence we must understand how humans tell,

understand, and recombine stories because the mechanisms that enable these abilities

are what separate human intelligence from that of other primates [15]. Humans, as

opposed to other primates, have the ability to perform what Noam Chomsky calls a

merge operation which is enabled by a completed anatomical loop in our brains that

other primates do not have [14]. This merge mechanism is what allows us to create

complex, highly nested symbolic representations of various sorts, which directly gives

rise to our story related abilities [14]. Moreover, stories are an integral part of how

we learn. We learn about morals from fairy tales, history through anecdotes, and

even things like recipes can be thought of as a special sort of story. Furthermore,

causal reasoning is an important aspect of story understanding. Therefore, it stands

to reason that in order to understand causal reasoning development it is reasonable

to investigate it through the lens of story understanding.

Additionally, as a representation, stories have important properties that other

representations lack. Stories are explanatory, compositional, and easy for people to

understand. They are easily crafted to suit the purposes and needs of any given study

which makes them particularly useful for studying the relationship between domain

knowledge, causal reasoning capabilities, and statistical data integration. Finally,

practically, the Genesis Story Understanding System, on which this thesis is based,

provides a powerful framework for story based operations such as pattern matching

and incorporating commonsense knowledge.

1.2.2 Why Domain-Specific Causal Reasoning?

Out of all the studies done on causal reasoning, why choose to emulate this study

([10]) in particular?

The Schulz et al. paper [10] distinguished very well between implementation and

theory. This separation allowed me to keep the theoretical aspect sound, while modi-

fying the implementation as necessitated by the constraints of the system I was using

16



(the Genesis system). Essentially, while I tried to keep the surface level methods of

my thesis as close to those in the study as possible, the flexibility in the design of the

methods of the original study allowed me to take liberties as needed without com-

promising the overall idea or design of the experiment. The fact that the study used

stories as its main experimental component was what drew me to the study, and the

fact that the stories are easily modifiable without losing their meaning or intended

design is what cemented its place in the center of my thesis.

Additionally, practically speaking, this was a study that was computationally

tractable. The Genesis system for story understanding already existed, and the study

was entirely based upon children understanding stories. Essentially, after reading the

study, I knew that it would be a reasonable and interesting endeavor to attempt to

create computational models that leverage the Genesis system in order to reproduce

the results of this psychological study.

1.3 Novel abilities of Genesis (as of May 2018)

Through my work, the Genesis system can now:

• Answer causal reasoning questions

• Deploy probabilistic commonsense inferences

• Model causal reasoning capabilities of different age groups

• Handle domain-related knowledge

1.4 Setting the Stage

In the rest of this thesis, I describe my computational, story-based model which cap-

tures the development of domain-based causal reasoning in children. In Chapter 2, I

give an overview of the psychological study that I based my thesis upon. In Chapter

3, I provide an overview of the Genesis Story Understanding System with a focus

17



on some features that were particularly relevant to my work. Having provided the

necessary background information, motivation, and theories, in Chapter 4, I discuss

the models themselves. I start with a behavior level model which replicates the be-

havior in the study. I then define and evaluate five alternative models which are more

psychologically plausible. Finally, I describe the implementation of my explanation

level model. In Chapter 5, I summarize my overall contributions.
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Chapter 2

Can Being Scared Cause Tummy

Aches?

To fully understand what I contribute in this thesis, you must first know a bit about

the study I used as the basis for my theory and models: “Can Being Scared Cause

Tummy Aches? Naive Theories, Ambiguous Evidence, and Preschoolers’ Causal In-

ferences” [10]. There were three different experiments detailed in the study, and

my thesis is focusing explicitly on the first of these 3 experiments. The purpose

of the study was to investigate how children’s general-purpose statistical reasoning

and domain-specific causal learning abilities interact. Essentially, there are domain-

general learning strategies where children learn from statistical evidence and domain-

specific theories that constrain children’s beliefs about what may be possible outcomes

of a domain-related event.

To begin, I shall define some terms: within-domain and cross-domain. For the

purposes of this thesis, I define a domain to be a conceptual category of information.

For example, physical actions (running, playing, contacting, etc.) might constitute

one domain and psychological actions (thinking, feeling, etc.) might constitute an-

other. These domains contain distinct sets of concepts. When I say “within-domain”

what I mean is that all the relevant actions come from the same conceptual category

(i.e., all physical or all psychological) as opposed to “cross-domain” where the rele-

vant actions come from a mixture of conceptual categories (i.e., a mixture of physical
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and psychological).

In order to test how general-purpose statistical reasoning and domain-specific

causal learning abilities interact, the experimenters read each child two stories, one

within-domain story and one cross-domain story, and then asked questions of the form

“Why does X? Is it because of Y or Z?”. Each story had one event that consistently

co-occurred with the effect X and multiple confounding events that also inconsistently

co-occurred with X; these events are represented by my placeholders Y and Z in that

question. For the within-domain story, all of X, Y, and Z were in the same (physical)

domain, while in the cross-domain story one of Y and Z was a domain-inappropriate

(psychological) potential cause while the other was in the same (physical) domain as

X. As mentioned earlier, in each story one of the potential causes Y and Z always

preceded effect X. In the cross-domain story, the potential cause that always preceded

the effect was the domain-inappropriate cause (or cross-domain cause).

Additionally, half the children in the study were part of the control or “baseline”

group. These children were only read two scenes from each story, as opposed to the

children in the experimental or “evidence” group who were read the entirety of each

story. This allowed the experimenters to understand and note any intrinsic biases

that the children may have in each scenario.

These stories would easily provide enough statistical evidence for an adult to be

able to confidently assert which of the potential causes in question was the true cause

of the effect in question, but children’s abilities to reason statistically with domain-

specific knowledge seems to be limited. This ability seems to develop over the course

of approximately a year of age. This study looked at three different age groups:

three-year-olds, three-and-a-half-year-olds, and four-to-five-year-olds, each of which

had distinct behavior.

What this experiment showed is that these age groups handle the integration of

statistical evidence with domain-specific beliefs in systematically different ways. The

three-year-olds apparently failed to learn from the evidence in either scenario while

the 4-to-5-year-olds were able to learn from evidence in both scenarios, albeit with

some more difficulty over all in the cross-domain task. What is particularly interesting
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though, is that the three-and-a-half-year-olds were able to learn from the evidence

in the within-domain scenario, but apparently unable to do so in the cross-domain

scenario.

These results are shown in Figure 2-1 [10]. The black portion of the bars in this

Figure represents the number of children in that age group who chose the “correct”

answer, referred to in the Schulz et al. paper as ‘A’. These results show that those

children in the baseline condition were all decently biased against ‘A’ (the cross-

domain cause) in the cross-domain task, while they seemed to answer at chance for

the within-domain scenario.
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Figure 2-1: Children of different ages exhibit differing ability to integrate domain-
related and statistical information according to the Schulz et al. study [10].
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2.1 Extension to this Thesis

The main contribution of my thesis is the development of an explanatory model for the

observations that Schulz et al. make. Rather than providing a statistical description

of the behavior, my model leverages story understanding capabilities such that it is

explanatory, compositional and sensible. The authors of the Schulz et al. study offered

three possible explanations as to why this behavior occurred. One of the most striking

explanations is that younger children “... might have difficulty making inferences from

ambiguous statistical data...the ability of the 3.5-year-olds to interpret data of this

complexity is fragile, any increase in task difficulty... might compromise children’s

ability to evaluate the evidence” [10]. For this thesis, I have taken this hypothesis

and expanded upon it.

I propose an abstract theory about how children might develop the ability to rea-

son about cross-domain events. The authors suggest that an increase in task difficulty

from within-domain to cross-domain reasoning tasks may be the cause of the three-

and-a-half-year-olds ability to use evidence in the within-domain case, but not in the

cross-domain case. I am proposing a theory about what might be happening between

the three-and-a-half-year-olds and four-to-five-year-olds to lessen the difficulty of the

cross-domain task.

I hypothesize that the three and three-and-a-half-year-olds, abstractly speaking,

may handle information about different domains separately from one another. You

can visualize this as having a Venn diagram consisting of separate circles each con-

taining the information about a different domain (Figure 4-7 seen in Chapter 4).

Over time, the knowledge within each of these circles (each of the domains) becomes

more interconnected, which would make it easier for children to reason about within-

domain causal relations (Figure 4-8 seen in Chapter 4). This could account for the

gap between three and three-and-a-half-year-old behavior. Furthermore, as we con-

tinue to grow and learn, the knowledge in circles may start to form connections with

information from a different circle (cross-domain connections) that would make it

easier to reason about cross-domain causal relations (Figure 4-9 seen in Chapter 4).
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This could account for the gap in reasoning behavior between three-and-a-half and

four-to-five-year-olds. This theory can be thought of, speculatively, as a neuronally

inspired mechanistic approach that proposes that the development of a cognitive abil-

ity is due to the creation of new “neuronal” links between information-specific regions

[2].

Even more abstractly, we can think of these two abilities (statistical information

reasoning and cross-domain understanding) as two switches that “turn on” over time

(Figure 2-2). This conceptual paradigm is better shown through Figure 2-2.

Cross-Domain Understanding
False True

Integration of Statis-
tical Information

False 3-year-old *3-year-old savant

True 3.5-year-old 4-year-old

Figure 2-2: Analysis of Mechanisms and Behavior: This table shows how the com-
binations of behavioral switches relates to the behavior of the age groups laid out in
the Schulz et al. study [10], including a new capability not covered.

The subdivisions in Figure 2-2 suggests a new theoretical possibility, which I la-

bel as the “three-year-old savant” and which the Schulz paper does not yet account

for. This would be a child who would be unable to integrate statistical evidence

with domain-related knowledge, but would be able to deal with cross-domain rela-

tions. This theory predicts a new possibility which future psychological studies could

investigate.

24



Chapter 3

Genesis System Background

One of the core ideas of this thesis is that storytelling and story understanding are

qualities that are uniquely human, so in order to mimic human intelligence using

computers, stories are a good place to start. The Genesis Story Understanding System

is a computational model of human story understanding capabilities and the core

software platform for this thesis. It has been developed by Patrick Winston’s research

group as a platform to advance artificial intelligence through story understanding.

The system makes use of Boris Katz’s START natural language parser [6] in order to

read short text-based stories consisting of simple english sentences.

Once Genesis has read and parsed the story, it builds up an elaboration graph.

This graph is a visual representation of the events and causal or logical connection

(both explicit and implicit) that happen in the story (see Figure 3-1 below). The

explicit events are the things that are explicitly stated in the text of the story while

implicit events are the things that Genesis concludes about the explicit events based

upon the rules that it has. For example, in Figure 3-1 there is an explicit element

“Macbeth murders Duncan”. This is an event that was stated in the text of the story

Macbeth. Connected to that box is an implicit event “Duncan begins to be dead”

which is not mentioned in the text of the story. This happens because the Genesis

system has a rule that says that murdering a person causes that person to become

dead.

In addition to simply displaying and matching these rules, Genesis currently has
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Figure 3-1: Elaboration graph displaying both explicit and implicit events from a
simple version of the story Macbeth. The white boxes denote explicit events while the
yellow boxes denote implicit events, and the lines show causal or logical connections
between the events. For example, “Macbeth murders Duncan” causes “Duncan begins
to be dead” to happen which leads to “Macbeth begins being king” etc.
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the ability to understand and interpret stories in different ways. For example, it

can read a story from an “eastern” perspective and from a “western” perspective

and come to different conclusions as to why various events happened as a result.

Similarly, Genesis can read stories through the lens of allegiance. This means that,

when cued by a human user, Genesis can read a story about a conflict or a war from

the perspective of either side and reach different interpretations. For example, when

reading a story about a cyber-conflict between Russia and Estonia, Genesis changes

its interpretation between “aggression of a bully” or “teaching a lesson” when looking

at the story from the Estonian and Russian perspectives respectively. Finally, Genesis

can also be persuasive in its storytelling. It can take an existing story and alter it to

make characters look better or worse to the reader.

What my thesis adds to this suite of capabilities is the ability to answer causal

reasoning questions in ways that model developing children.

In order to create my model, I leveraged two specific aspects of the Genesis system:

rules and concept patterns.

3.1 The Rules

In order for the Genesis System to understand stories beyond the explicit events,

we can provide knowledge to Genesis in the form of various rules. While Genesis

supports numerous types of rules, the two types I used extensively in my thesis were

prediction rules and explanations rules.

3.1.1 Prediction Rules

Prediction rules introduce implicit effects or results of events into the system’s un-

derstanding of a story. For example, we reflexively infer that killing someone means

that that person is now dead. However, a computer system would not know this

intrinsically, so the way we supply that knowledge is through prediction rules.

In Figure 3-2, I provide an example prediction rule. When this rule is included in

the reading of a story, the system will try to match the antecedent with an event in
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XX and YY are persons.

If XX kills YY then YY becomes dead.

Figure 3-2: Prediction rules expressed in simple English produce implicit knowledge
and connections into the story. Example borrowed from [13].

the story. In this case that means if an event like “Macbeth kills Duncan” appears

in the story, then this rule will be activated, and the event “Duncan becomes dead”

would be inserted into the story. Not only would “Duncan becomes dead” be inserted,

but a causal link between the two events would appear in the elaboration graph [13].

Figure 3-3 shows an example of how this looks in the elaboration graph.

Figure 3-3: In the elaboration graph, white boxes denote explicit events and yellow
boxes denote implicit events. Prediction rules supply the implicit connections and
events. Example borrowed from [13].

3.1.2 Explanation Rules

Explanations rules enable Genesis to guess at potential causes of events (both explicit

and implicit) in a story. For example, we know that angering someone might possibly

lead to that person retaliating against whatever angered them. Explanation rules are

the way we provide such knowledge.

While the example in Figure 3-4 may include an extreme form of retaliation, the

principle still stands. When this kind of rule is included in the reading of a story, the

system will search for the existence of both the antecedent and consequent within the
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XX and YY are persons.

If XX angers YY, then YY may kill XX.

Figure 3-4: Explanation rules expressed in simple English suggests implicit causes for
unexplained events. Example borrowed from [13].

story’s events. If, and only if, the consequent has no pre-existing explanation, then

the system will draw a potential causal connection between these two events. Figure

3-5 shows an example of how this looks in the elaboration graph.

Figure 3-5: In the elaboration graph, white boxes denote explicit events and yellow
boxes denote implicit events. An Explanation rule, shown here with a dashed orange
line, finds a potential explanation for “Macduff kills Macbeth”. Example borrowed
from [13].

3.2 Concept Patterns

In addition to generating causal connections between individual events, Genesis can

recognize concept patterns over the course of events in order to fully understand a

story. For example, Genesis can find the concept of revenge occurring in the story of

Macbeth even though the word “revenge” never appears.Concepts like revenge take

place over the course of multiple events and can usually be summarized as one event

leading to another event further down the road. Genesis uses concept patterns to

identify such high-level themes in stories.

Figure 3-6 contains an example of how we might define the concept of revenge.

It doesn’t matter how many intermediate events there are: as long as there is some

causal chain stretching from the antecedent to the consequent, then Genesis recognizes
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XX and YY are persons.

Start description of ‘‘Revenge’’.

XX’s harming YY leads to YY’s harming XX.

The end.

Figure 3-6: Genesis’s concept pattern for revenge links harm to reciprocal harm
through any number of intermediate events. Example borrowed from [13].

an instance of revenge. Figure 3-7 shows how a concept like revenge is realized in the

elaboration graph.

Figure 3-7: An instance of the revenge concept pattern, found in the story Macbeth,
is shown in green in the elaboration graph. Example borrowed from [13].

Using Genesis’s framework of rules and concept patterns, I implemented my model

described in this thesis.

30



Chapter 4

Building The Computational

Models

In order to build the computational characterization of the children’s behavior, I

broke the implementation down into three major steps. In this chapter I discuss

these steps: implementing a behavior level system based on the Bayesian model

presented in the Schulz et al. study, implementing a psychologically plausible (expla-

nation level) model, and how I made the methodology from the Schulz et al. study

Genesis compatible.

My main objective in this thesis is to develop a computational, humanly-plausible

account for how domain-specific causal reasoning develops in children. To start,

I simply replicate the Bayesian behavior-level model by Schulz et al. [10]. I then

articulate a number of more psychologically plausible explanations: that younger

children have difficulty integrating different types of knowledge, that older simply

have greater working memory, that censor rules initially inhibit cross-domain causes,

that children reorganize their knowledge categories over time, or that knowledge in

distinct brain regions becomes increasingly interconnected based on spatial proximity.

I ultimately choose to implement this last, neuronally inspired, theory. Besides being

especially predictive and plausible, the neuronally inspired theory has the unique

virtue of being easily expressible in terms of story understanding capabilities such as

rule matching and concept pattern identification.
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4.1 The Behavior-Level Model

As a starting point for my implementation work, I decided to implement a behavior-

level model to demonstrate base-line computational viability. In the original study,

the authors provide a description of the Bayesian Model that they made to predict

the children’s behavior on the causal reasoning tasks [10]. I began by taking the

mathematical description of that model [10] and implementing it on top of the Genesis

system. The model reads in a story or a sequence of stories and answers causal

questions such as “Did X happen because of Y or Z?”. Additionally, although the

original model in the paper was only intended to function for the four-to-five-year-

old category of children, so I extended the statistical reasoning model to also work

accurately for the three-year-old and three-and-a-half-year-old categories as well.

4.1.1 Three-year-old

According to Schulz et al. three-year-olds don’t incorporate statistical evidence and

can’t make cross-domain connections when reasoning about stories. For example, a

three-year-old does not believe that feeling scared can cause a stomach-ache no matter

how many times those event co-occur in stories. When asked to choose between two

plausible within-domain candidates, three-year-olds seem to ignore any statistical

evidence from the story.

Schulz’s Bayesian model, and my implementation of it, supposes that because

children do not systematically use statistical evidence, each individual child effec-

tively chooses an answer at random. As a result, this model was implemented based

upon random chance and probability. While this predicts the aggregate behavior, I

believe that it does not adequately or appropriately model the possible mechanisms

that might be at play in an individual child’s mind, which is why I developed the

explanation level model described in section 4.2.

I implemented the behavior of the three-year-old model in a method called an-

swerAs3YearOld that can, once Genesis has read in a sequence of stories, answer

questions of the form described in section 4.3.2, meaning questions of the form:“Did
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Z because X or Y?. Within this question structure, there are three cases that this

model can handle: X is in the same domain as Z but Y is not, Y is in the same

domain as Z but X is not, and both X and Y are in the same domain as Z. This

presumes that all three events in question occur in the relevant story. If only one

of X and Y happens in the story, the model will choose the one that occurs as a

reasonable, though experimentally unverified, default option. Assuming that all of

the events exist in the story, this model only needs to know whether the causes in

question (X and Y) are within-domain or cross-domain with respect to the effect (Z)

in order to answer the way a three-year-old would. The prior probabilities of choosing

a cross-domain or within-domain cause were taken from the Bayesian Model given

the the Schulz et al. study [10]. Specifically, the authors proposed an a priori bias

against cross-domain causes of 0.1, and the resulting data from the three-year-old

participants in the study aligns with this bias, meaning that I can produce compa-

rable result by randomly answering the cross-domain answer 10% of the time in the

three-year-old model.

This model is able to replicate the results found in the Schulz et al. study as

showing in Figures 4-1 and 4-2.

Figure 4-1: This is the console output from running the three-year-old behavior level
model on the within-domain story. At the top, you can see the question asked and
the answer given by this instance (representing one child in the study). The bottom
shows the cumulative tally of responses across this and the previous 15 responses.
This means that the model produced 6 “garden” responses and 10 “cattails” responses
where cattails is the “correct” response.
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Figure 4-2: This is the console output from running the three-year-old behavior level
model on the cross-domain story. At the top, you can see the question asked and
the answer given by this instance (representing one child in the study). The bottom
shows the cumulative tally of responses across this and the previous 15 responses.
This means that the model produced 2 “feels scared” responses and 14 “eats a carrot”
responses where feeling scared is the “correct” response.

4.1.2 Four-to-five-year-old

The four-to-five-year-olds in the study managed to integrate statistical evidence into

their causal reasoning process in both within-domain and cross-domain circumstances.

Their ability to do so made them the most complex age group to model. Fortunately,

the Bayesian Model in the Schulz et al. study provided the exact mathematical de-

scription of the behavior I wanted to model. As a result, I implemented an event

tabulating program which counts the occurrences and co-occurrences of events in

order to make Bayesian inferences.

The Schulz et al. Bayesian model revolves around the equation [10]:

P (h|D) =
P (D|h) ∗ P (h)

ΣH′P (D|h′) ∗ P (h′)

where h is a hypothesis about the causal process, H is the space of all hypotheses,

D is the data. In the equations below, A is the potential cause being asked about

[10]. Furthermore, the study looks into the specific case of a forced choice between

two options. In this case, the Bayesian Model makes use of the following equation [10]:

P (chooseExplanationA|D) =
P (ExplanationA|D)

P (ExplanationA|D) + P (ExplanationB|D)
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This equation gives a numerical answer to how likely it will be that a child would

choose explanation A as opposed to explanation B as their belief given data D. In

this case,

P (ExplanationA|D) = ΣHP (ExplanationA|h) ∗ P (h|D)

which defines the likelihood of Explanation A being chosen given the data [10].

My program calculated the relevant probabilities by counting events in the story.

Specifically, as my expert reads a story, it keeps track of the different events that

have occurred in the story, the count of how many times each event has happened

in the story, and finally what events happen in individual scenes. I make use of this

information to calculate all the parts of the equations above. In particular, the number

of times that a given event co-occurs in a scene with the effect in question is important

to calculate the probability of the data given a causal hypothesis. I based my prior

probability of a causal hypothesis upon the values given to the Bayesian Model in the

Schulz et al. study. Specifically, I scale the probability of a cross-domain cause by

0.1, meaning that I set the P (h) multiplier as P (h) = 0.1 when h is a cross-domain

cause, as suggested in the study [10]. This effectively penalizes cross-domain theories

in a way that mimics conservative learning behaviors.

Ultimately these equations combined with the data from reading the stories would

calculate the likelihood that a four-to-five-year-old would answer the first option from

the question posed. For example in the question “Does Z because X or Y?”, the model

would produce a number for how likely it is that the model would answer “X”. I then

used this number along with a random number generator to determine whether the

model answers X or Y.

Using this model, run 16 times to simulate that 16 children of this age group in

the study, I was able to produce similar results to those in the study.
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Figure 4-3: This is the console output from running the four-to-five-year-old behavior
level model. At the top, you can see the probability that the model will choose
“cattails” (the correct answer) as well as the question asked and the answer given by
this instance (representing one child in the study). The bottom shows the cumulative
tally of responses across this and the previous 15 responses. This means that the
model produced 0 “garden” responses and 16 “cattails” responses where cattails is
the “correct” response.

Figure 4-4: This is the console output from running the four-to-five-year-old behavior
level model on the cross-domain story. At the top, you can see the probability that
the model will choose “eats a carrot” (the wrong answer) as well as the question
asked and the answer given by this instance (representing one child in the study).
The bottom shows the cumulative tally of responses across this and the previous 15
responses. This means that the model produced 7 “feels scared” responses and 9
“eats a carrot” responses where feeling scared is the “correct” response.

4.1.3 Three-and-a-half-year-old

The three-and-a-half-year-olds in the study were able to integrate statistical infor-

mation into their causal reasoning process when all of the options were in the same

domain, but were not able to do so when there was cross-domain reasoning involved.

Essentially, this meant that I needed to handle within-domain causes systematically

differently than cross-domain causes. As a result, my approach to this model was a

mixture of the implementation of the three-year-old model and the four-to-five-year-

old model.

When answering a question, my three-and-a-half-year-old model checks whether

the cause and effect are in the same domain or not. If they are, the model will

integrate the statistical information. Otherwise, it will ignore the statistical evidence

and make a decision based upon its prior probability of a cross-domain cause. With
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this implementation, the model produces similar results to that of the three-and-a-

half-year-old age group in the study.

Figure 4-5: This is the console output from running the three-and-a-half-year-old
behavior level model on the within-domain story. At the top, you can see the proba-
bility that the model will choose “cattails” (the correct answer) as well as the question
asked and the answer given by this instance (representing one child in the study). The
bottom shows the cumulative tally of responses across this and the previous 15 re-
sponses. This means that the model produced 1 “garden” responses and 15 “cattails”
responses where cattails is the “correct” response.

Figure 4-6: This is the console output from running the three-year-old behavior level
model on the cross-domain story. At the top, you can see the question asked and
the answer given by this instance (representing one child in the study). The bottom
shows the cumulative tally of responses across this and the previous 15 responses.
This means that the model produced 1 “feels scared” responses and 15 “eats a carrot”
responses where feeling scared is the “correct” response.
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4.2 The Psychologically Plausible (Explanation-Level)

Model

While statistical reasoning may certainly play a part in our reasoning and decision

making, as discussed previously, it is my fundamental belief that we are more than

just statistical machines. It is my belief that any model must also be explainable,

and this section of my thesis is dedicated to how I built this explainable model.

4.2.1 Discussion of Psychologically Plausible Models Consid-

ered

Over the course of the thesis, my primary goal has been to create models that are

psychologically plausible, meaning that they could serve as a computational theory of

what might actually be happening in the children’s minds when they are answering

the questions in the experiment. The probabilistic models described in section 4.1

only functioned as a behavioral model, not the psychologically plausible model that

I set out to achieve. Those early models served as a proof of concept and a jumping

off point for what I believe to be the most interesting part of the thesis: coming up

with different computational theories about what might be happening during the two

stages of causal reasoning development shown in the Schulz et al. study [10].

In this subsection, I propose and evaluate five explanatory computational models

for development, and I argue for their psychologically plausibility. The first two mod-

els account only for the ability to incorporate statistical evidence in within-domain

cases, the third accounts only for the ability to reason about cross-domain causes,

and the last two account for both.

1. New Ability to Integrate Domain-Specific Information (Three to Three-and-a-

Half-Year-Old Transition)

• Knowledge Integration Theory
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This theory is based upon the idea that young children may have diffi-

culty integrating different types of knowledge in order to make decisions.

For example, there was an experiment in which it was shown that young

children cannot integrate color and geometric knowledge in order to make

an appropriate decision [5]. Here, I propose that something similar might

be happening with regard to numerical or frequency data integrating with

domain knowledge.

Essentially, the way that the data from the Schulz et al. experiment can

be interpreted is that the change in causal reasoning behavior between

ages three and three-and-a-half is due to an increased ability to integrate

numerical data across within-domain cause and effect pairs. The three-

year-olds do not appear to take any of the frequency data into account when

answering the questions about the cause of and effect. They effectively

answer at chance for the within-domain case despite the overwhelming

evidence for one option over the other. However, the three-and-a-half year

olds do seem to make the connection between the frequency information

and their answer to the questions.

With this theory, I propose that the development that occurs in this 6-

month period can be described as a new ability to handle multiple types

of data at the same time, rather than only being able to use one type

of information or the other to make a decision. Although I do not pursue

this theory, I note that this theory could be modeled in the Genesis system

by first introducing a method of both gathering and inhibiting the use of

numerical data in the three-year-old model. Then, to model development,

the method of inhibition would be systematically removed to make the

model behave like a three-and-a-half-year-old.

One weakness of this theory is that it cannot account for three-and-a-

half-year-olds’ inability to integrate statistical evidence with cross-domain

causal reasoning. That issue is not a prohibitive fault of this theory, but it

would be preferable for a model to account for both transitions. A second
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weakness of this theory is the inhibitor switch mechanism. It implies that

there is some time during development where the behavior and informa-

tion processing capabilities suddenly and immediately change which I find

implausible.

• Working Memory Theory

In this case, I am hypothesizing that perhaps three-year-old children have a

more limited working memory than three-and-a-half-year-olds. According

to this theory, three-year-olds can remember or count how many times one

event or another happens, but do not have enough working memory to

count how many times multiple events happen. In contrast, the three-and-

a-half-year-olds have enough memory capacity to be able to keep track

of the multiple pieces of data required to make within-domain statistical

inferences. This working memory increase could be due to an increase in

myelination [2] or because of an increase in brain size.

In layman’s terms, this is a theory is suggesting that the main develop-

mental improvement between age three and three-and-a-half is the abil-

ity to work with more data simultaneously. While this theory explains

why three-and-a-half-year-olds can integrate statistical evidence in within-

domain cases, it does little to shed light on why this would only affect

within-domain learning rather than both within-domain and cross-domain.

In fact, if I were to choose to adhere to this theory, I would then be rea-

sonably compelled to answer that very question: why would a memory

improvement like this only correspond to within-domain causal relations?

In truth, I cannot answer that question without there being some other

underlying mechanism or explanation beyond a simple memory space in-

crease. Therefore, I rejected this theory.

2. New Ability to Handle Cross-Domain Information (Three-and-a-Half to Four-

to-Five-Year-Old Transition)
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• Removal of a Censor Rule

The premise of this theory is that in younger children there is some sort

of “censoring rule or mechanism that inhibits or prevents children from

considering cross-domain explanations. There could be many mechanisms

underlying censor rules, such as under-connected neural pathways between

areas of domain knowledge [9]. Essentially the lack of connectivity could

be enforced in order to build up distinct domain knowledge first without

the potential errors that could arise from less constrained learning at the

beginning.

The primary weakness of this theory as I see it is that it implies a more or

less “instantaneous switch between behaviors. While children sometimes

exhibit rapid qualitative shifts in behavior [1], it does not seem to me that

causal reasoning behaviors would fall under this pattern. I think that it is

most likely a slow, continuous development.

3. The Ability to Integrate Statistical Evidence and Cross-Domain Information

(Three-Year-Old Through Four-to-Five-Year-Old Transitions)

• Neuronally Inspired Theory

According to this theory, domain-specific knowledge and processes lie in

isolated regions of the brain. Conceptual connections form initially within

domains, and then later between domains, as a direct result of increased

neural connectivity.

Conceptually, you have“clusters of domain knowledge that are stored sep-

arately from each other, and as you grow, these clusters become more

connected both internally and between each other. By way of explana-

tion, consider two circles that each contain some dots. Each of the circles

represents a domain and the dots are all little bits of knowledge or ex-

amples of things that belong in the domain circle that they are within. I
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Figure 4-7: Three-year-olds’ domain-specific knowledge can be represented by distinct
regions with distinct pieces of conceptual knowledge within them. This abstract
representation explains three-year-olds’ lack of ability to integrate statistical evidence
within domains or to recognize abstract connections between physical events and
psychological events.

propose that children progress through three states with two transition or

developmental periods, as follows.

The starting state consists of physically disconnected domains with few

connections within domains and no connections between domains. In the

context of the Schulz et al. [10] experiment, one circle contains physical

domain knowledge and the other contains psychological domain knowledge

4-7.

In the case of my Genesis based behavior level models, the domain knowl-

edge contained would be the different verbs that belong to each domain.

This initially disconnected model accounts for the question answering capa-

bilities of a three-year-old child. Specifically, because there are no“connections

between the dots within the circles, they don’t have the ability to link or

combine data about different dots within the same circle. This would

provide an explanation as to why they don’t seem to use the evidence pro-

vided in the story to do better than guessing at chance for within-domain

cause-effect pairs. Additionally, this model would give an explanation as

to why there is such a heavy bias towards within-domain versus cross-

domain explanations at three-years-old; because the cause and effect in a
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cross-domain pair are completely separate from each other in the mind of

the child. The cause would be in one circle while the effect was in the

other.

In this second state, connections have been formed within domains due to

proximity (Figure 4-8). In terms of the model for this theory, this develop-

ment would mean that new connections between dots within the same circle

have been formed. The connections between concepts here could convey

many sorts of information including how the concepts generally relate to

each other or even how often you notice the concepts appearing together.

Therefore, the first transition in this model would be the growth or ap-

pearance of these new within-domain connections that allow us to use the

evidence provided in the stories for within-domain cause-effect pairs, while

still penalizing cross-domain cause-effect pairs. This state captures how

three-and-a-half-year-olds can begin to incorporate statistical information

within domains, but not between domains.

Figure 4-8: Three-and-a-half-year-olds’ domain-specific knowledge can be represented
by distinct regions with connected pieces of conceptual knowledge within them. This
abstract representation explains three-and-a-half-year-olds’ ability to integrate statis-
tical evidence within domains and their lack of ability to recognize abstract connec-
tions between events across the two domains.

Finally, in the third state, connections have also begun to form between

spatially distinct domains. Essentially, between three-and-a-half and four-

to-five-years-old I propose that new connections are forged between the
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Figure 4-9: Four-to-five-year-olds’ domain-specific knowledge can be represented by
distinct regions with connected pieces of conceptual knowledge within and between
them. This abstract representation explains four-to-five-year-olds’ ability to both
integrate statistical evidence within domains and to recognize abstract connections
between events across the two domains.

dots in the different circles meaning that concepts from the physical domain

become connected and related to concepts in the psychological domain

(Figure 4-9). The fact that this new kind of cross-domain connection

now exists is what enables four-to-five-year-olds to be able to consider

a physical action to be the cause of a psychological effect. Looking at

this through the lens of this theory, the four-year-olds’ new ability to learn

cross-domain cause-effect relations would signify that new connections were

formed between the different circles.

All in all, I find this theory and neuronal analogy to be very compelling.

That said, it is not without its drawbacks. For example, in reality, there

must be some way to curate, prune, and/or prevent different connections

from forming. The limiting of connections between ideas is important be-

cause it prevents children from learning irrelevant or incorrect information

[9]. However, the theory and approach that I have laid out here does

nothing to address this important aspect of learning.

Even so, this is a good first step. It may not be as predictive as we might

want it to be, as it doesn’t predict which information falls into which

domains, which domains are formed and when, and which connections are

formed and when, but it gives a framework that enables us to think and
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talk about domain based causal reasoning development.

• Search Through Probability Space of Different Models Rather than Causes

This theory suggests that what is happening during the development stages

is a change in the probability space of mechanisms rather than a change in

the mechanism itself. To elaborate, in the initial stage of development that

I discuss in section 4.1, I had written the models as various probabilistic

searches through the solution space. The various models weight options

differently based upon the “age” of the model to mimic the behavior of the

various age groups of children from the study. What I am suggesting with

this theory is that perhaps it isn’t just the probability of individual causes

that change, but rather the whole conceptual framework or mechanism

that they are thinking about.

I propose here that a plausible explanation of what is happening during

development is that the conceptual framework changes, not just the prob-

ability of individual causes. Essentially, I am saying that perhaps there

are a few different mechanisms for understanding causal relations that all

exist during all of these ages, however due to the child’s beliefs, some

mechanisms are preferred over others. Therefore, there are some methods

of solution that have“higher weights in terms of probability than others,

and these weights are what change over time. This theory would explain

the overall shift in answers across age groups, but it could also explain the

outlier responses in each case as simply a probabilistic error rather than a

systematic failure.

While this theory is interesting, I find it problematic because it does noth-

ing to improve the actual mechanisms of the models. It only really discusses

the transitions rather than the states themselves which leaves too many

loose ends to be a reliable theory. For this reason, I have decided not to

pursue or implement this theory.
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4.2.2 Representational Choice

I decided to implement the Neuronally Inspired Theory which has the virtues of be-

ing explanatory, compositional, and sensible. It is also easily implementable using

explanation and prediction rules and concept patterns. I supplied Genesis with do-

main knowledge such as that if you play with an object, then you contact it and that

contact is a physical concept.

Earlier, in the behavior-level model (section 4.1), I had hard coded the neces-

sary domain knowledge by categorizing verbs such as “run” or “think” as physical

or psychological. I was able to drastically improve upon this representation in the

explanation-level model. By using rules and concept patterns I was able to impart

more interesting and relevant domain based knowledge to my model such that it

would be more explainable and thus psychologically plausible. These rules and con-

cept patterns essentially enable my model and Genesis to represent the formation of

new connections between concepts or events. Therefore, they may abstractly repre-

sent new neuronal connections and thus enable or prevent the ability to reason well

about cross-domain information.

4.2.3 Rules for the Model

One of the important aspects of Genesis that I leveraged for this thesis is the ability to

define personality traits. When writing stories for Genesis, you can designate whether

or not Genesis should be reading the story through the lens of specific personalities.

The personality trait files can define things like additional or different rules for how

to interpret events that happen in the main story. This was exactly the functionality

that I wanted to have in order to implement the models for the different age groups

through rules. I created “personality trait” (for this use case, I think of them more

as “ability level”) files for each age group: three-year-old, three-and-a-half-year-old,

and four-to-five-year-old.

Initially, I had set out to design a set of rules for each age group, however there

was such significant overlap between them that I created a fourth file containing what
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I considered to be common age knowledge that all of the individual models would

need. The common age knowledge encompasses information about causal relations

within domains. In particular, it defines the knowledge required to make a complex

logical inference such as that running through cattails can cause itchy spots: children

must know that running is a type of physical action, that running in something can

cause you to contact it, that contact is also a physical action, and that contact can

cause itchy spots. Figure 4-10 shows an example of some of the prediction rules in

the common age knowledge file.

VV is a thing.

XX is a person.

// PHYSICAL ACTION --> CONTACT

If XX experiences a physical-action in VV, then XX contacts VV.

If XX experiences a physical-action with VV, then XX contacts VV.

// ACTION --> PHYSICAL-ACTION

If XX runs in VV, then XX experiences a physical-action in VV.

If XX plays with VV, then XX experiences a physical-action with VV.

// FOR BUNNY STORY

If XX eats VV, then XX experiences a physical-action with VV.

Figure 4-10: Examples of Prediction Rules Used in Explanation Level Models

In addition to the prediction rules defined above that will always create causal

links, I also found a need for explanation rules. When certain events occur they

can be a cause for further events, but are not necessarily direct indicators that some

effect must occur as a result. In the case of this study, just because Bambi comes into

contact with something does not inherently mean that Bambi will get itchy spots.

However, the models should be able to identify that contacting something could be

the cause for the itchy spots. This is why the explanation rules are necessary. Figure

4-11 shows an example of some of the explanation rules in the common age knowledge

file.

The rules in the common age knowledge file, enable my computational model to
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VV is a thing.

XX is a person.

// DEFINING SICKNESSES

Sickness is a kind of physical-thing.

Sickness is a kind of psych-thing.

Physical-sickness is a kind of sickness.

Psych-sickness is a kind of sickness.

Itchy spots is a kind of physical-sickness.

Nausea is a kind of physical-sickness.

If XX contacts VV, then XX may experience a physical-sickness.

//DEFINING EMOTION

Emotion is a kind of psych-thing.

Negative-emotion is a kind of emotion.

Positive-emotion is a kind of emotion.

Scared is a kind of negative-emotion.

Great is a kind of positive-emotion.

CC is an emotion.

If XX experiences a psych-action about VV, then XX may feel CC.

Figure 4-11: Examples of Explanation Rules in Explanation Level Models

produce causal links from the potential causes in the stories to the effect in question

in the stories. It turned out that there was only one rule that needed to be different in

the four-to-five-year-old model from the other two (which are identical). Specifically,

the four-to-five-year-old model needed to add a link between psychological experiences

and physical ones. In order to do so, I added the explanation rule shown in Figure

4-12 to the four-to-five-year-old model.

With all of these rules in place, my model of the different age groups produces

elaboration graphs like the ones shown in Figure 4-13 and Figure 4-14. These figures

show the elaboration graphs for the three-year-old and three-and-a-half-year-old mod-
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VV is a thing.

WW is a person.

If WW experiences a negative-psych-action,

then WW may experience physical-sickness.

Figure 4-12: Examples of Explanation Rules in Four-to-Five-Year-Old Explanation
Level Model

els and the four-to-five-year-old model respectively. The primary difference between

the children is that the four-to-five-year-olds infer that feeling scared (a psychological

event) can cause nausea (a physical event), while younger children do not. The two

elaboration graphs shown in Figures 4-13 and 4-14 show how my model captures this

difference through the presence or absence of an explanation rule. This one connec-

tion is what enables the “older” model to understand that a psychological action may

be able to produce a physical effect.

Figure 4-13: When presented with a sequence of stories both three and three-and-
a-half-year-olds are limited to within-domain explanations: there are no connections
between the top (psychological) events and the bottom (physical) set of events al-
though they are part of the same story.
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Figure 4-14: In contrast to Figure 4-13, a four-to-five-year-old who reads the same
story concludes that being scared (a psychological event) can cause nausea (a physical
event). In my system, this new possibility is achieved by introduction of a cross-
domain explanation rule.

4.2.4 Concept Patterns

Despite the chain of causal connections that clearly exist in the elaboration graphs in

Figures 4-13 and 4-14, this is not enough for the Genesis system to make that causal

deduction. In order to have Genesis recognize a causal chain, concept patterns must

be employed. To this end, I defined a few different concept patterns to recognize

different causal links. Specifically, I defined patterns to identify where running in

something is linked to a physical-sickness, where eating something is linked to a

physical-sickness, and where feeling something is linked to a physical-sickness (Figure

4-15).

With these concept patterns, Genesis recognizes when physical or psychological

causes eventually lead to physical or psychological effects. These connections are con-

sequently highlighted in the elaboration graph that the model produces. Importantly,

the psychological cause to physical effect concept pattern only gets recognized in the

four-to-five-year-old model’s understanding of the story as shown in Figure 4-17 as

opposed to Figure 4-16.

Furthermore, the concept patterns were important to create for the explanation

level models because their existence enabled the underlying statistical calculation to

be more reasonable as well. Now, instead of simply relying upon whether or not

two events happened in the same scene, I can set the calculations to keep track of
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XX is a person.

VV is a thing.

Start description of ‘‘Physical cause ingestion to physical effect’’.

XX’s eating VV leads to XX’s experiencing a physical-sickness.

The end.

Start description of ‘‘Physical cause contact in to physical effect’’.

XX’s running in VV leads to XX’s experiencing a physical-sickness.

The end.

Start description of ‘‘Psychological cause to physical effect’’.

XX’s feeling VV leads to XX’s experiencing a physical-sickness.

The end.

Figure 4-15: Concept Patterns for Sickness

how many scenes activated relevant concept patterns. This means that the statistical

reasoning can now be restricted to candidate causes rather than all prior events which

I think is a much improved method of reasoning.
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Figure 4-16: The physical cause to physical effect concept pattern highlights a long
distance connection between eating a sandwich and experiencing nausea.
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Figure 4-17: The four-to-five-year-old model has a psychological cause to physical ef-
fect concept pattern which highlights a long distant causal connection between feeling
scared and experiencing nausea.
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4.3 Converting the experiment to be Genesis Com-

patible

In order to develop the models that you have just seen, the first crucial task was to

adapt the experiment to the Genesis Story Understanding System. At its most basic,

the Schulz et al. study consisted of reading some stories and then answering questions

about them, at which point, the Genesis system would need to be able to read the

stories from the study and answer the kinds of questions asked in the study. While

Genesis technically had the ability to read stories and answer questions before my

work, both the stories and questions from the study needed to be tweaked to work

with the Genesis system. The simplicity of children’s stories belies the wide variety

of skills required to understand them.

4.3.1 The stories

The stories included in the Schulz et al. study are very simple from a human perspec-

tive, however there are a decent number of aspects of the stories that are complicated

for Genesis to handle. In particular, I ran into some problems with the START

parser, some issues with the repetitive nature of the story, and some difficulties with

how Genesis was dealing with matching events and actors. Some of the problems

ended up being addressed by altering the story file itself while others wound up find-

ing solutions in the actual Java code or uncovering underlying issues in the Genesis

system that needed to be worked around while a fix for the larger bug was in progress.

On the whole, the stories were fairly easy to recreate as the Schulz et al. study

provided a full text of the stories in its appendices [10]. The vast majority of the

stories were able to parse well after simply copying the text of the stories from the

study. However, there were a few specific parts of the stories that wouldn’t parse,

so I changed them in as minimal a way as possible that enabled them to parse. For

example, the phrase “cedar trees” would not parse properly, so I changed it to “pine
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trees” which parsed fine. Some other minor changes like this included:

• ... runs through a place → ... runs in the place.

• ... plays with his toy truck → ... plays with a truck.

• ! → .

• show and tell → show-and-tell

• tummy ache → tummy-ache → nausea

• splitting compound sentences into two separate sentences. For example: “On

Thursday afternoon, Bambi plays jump rope and Bambi runs in the sand.” →

“On Thursday afternoon, Bambi plays jump rope. Bambi runs in the sand.”

• “On Thursday afternoon, Bambi plays jump rope.” → “The time is Thursday

afternoon. Bambi plays jump rope.”

• removing “on his legs” from “Bambi has itchy spots on his legs.”

Genesis does not have a full fledged, human-level capacity to reason about time.

The stories from the study all rely on the reader being able to draw a distinction

between what happened on one morning or afternoon versus the next. Genesis does

not have the ability to do this without adding a specific scene change idiom into the

story. Specifically, starting a sentence with “Then,” informs Genesis that a new scene

is starting [13]. The addition of scene markers into Genesis enables it to understand

that repeated events are independent events, not the same event simply being men-

tioned twice. This was an essential functionality to have due to the repetitive nature

of the stories. As a result, I added these scene markers to the story at the beginning of

each morning and afternoon which produced the following kind of change in sentences:

“The time is Thursday afternoon.” → “Then, the time is Thursday afternoon.”

A full text of the stories can be found in Appendix A.
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4.3.2 The questions

Much like with the stories, there were some minor alterations that I needed to make

to the questions. The original question format in the study was:

“Why does Bambi have itchy spots? Is it because of running through the garden

or because of running through the cattails?”

This kind of format, unfortunately does not work in the Genesis system, seeing as

it is phrased as two separate questions. In order to make this question work for the

Genesis system, I rephrased it into a single question:

“Does bambi have itchy spots because bambi runs in the garden or bambi runs

through the cattails?”

Initially, I had tried repeating the “because” to more clearly identify that it’s

inquiring about two separate causes, however the START parser was unable to handle

questions of that format. The same structure of question was used for both stories,

so the same sort of alteration to the question for the second story was made.

Having described how I tailored the original study to be parsable by Genesis, I

now describe the architecture of my models and how they are able to understand the

inputs.

4.4 High-Level Structure

The first step was to create a workspace that was integrated with the Genesis System.

The Genesis System was designed in such a way as to make modular development

easy and easy to set up. Essentially, there is a box-and-wire design, so information

is transferred between modules via “wires” where you can specify sources and desti-

nations [12]. I made use of this design in order to construct my models as their own

module within the Genesis System.
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4.4.1 Expert Class and Wiring

I structured my module as an expert module within Genesis. What this means is

that in the main Genesis GUI, there is a checkbox that indicates whether or not

this code is being included when reading stories. Due to the way that I wired up

the expert, the story information will be received and handled only if the expert’s

checkbox is checked. This setup enables my models to be run by anyone with the

Genesis system, as opposed to needing to run from a specific file. Implementing the

models in this manner turned out to be particularly convenient during the transition

between developing the behavioral level model and developing the explanation level

model. I was able to simply “plug in” the new model file rather than needing to wire

up a whole new setup.

4.4.2 Filtering and Answering Questions

I implemented question answering in such a way that questions would only be trans-

mitted to my model if a corresponding radio button is selected in the Genesis GUI.

I wanted this feature to be included in the system so that I could be certain that

the questions would be directly transmitted to my expert class for processing rather

than Genesis’s general question answering system. When questions are sent to my

expert class, I do some pre-processing on the questions to make sure that they are

in the relevant format for the study. Specifically, I implemented a filter in my expert

class such that it will only attempt to answer questions that are well-formed for the

study. This means that the system is designed to only answer questions of the form

“Does ZZ because XX or YY?”. Essentially, I needed to first check to make that that

the question is a “Did” question, and then check if there is a two element disjunction

within the question.

Once I have determined that the question being asked is one that is relevant to

the experiment, I pass the question along to my model so that it can answer the

question.
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Chapter 5

Contributions

In this thesis I have proposed that causal reasoning is an essential aspect of human in-

telligence and that we can understand it by studying how it develops. I have proposed

that story understanding capabilities play an essential role in how we humans make

causal connections, integrate information from past experience, and organize informa-

tion according to domain. To advance these ideas, I built a humanly-plausible model

of how causal reasoning develops in distinct stages, replicating a study by Schulz et

al. [10] and taking it to another level. Unlike many existing cognitive models, my

model not only describes the developmental phenomenon, but explains it in terms of

story-understanding mechanisms. Furthermore, it exhibits the three essential traits

of psychologically plausible models—it is explanatory, compositional, and sensible.

More specifically, I:

• Introduced three criteria that a computational model must satisfy in order to

be psychologically plausible. These criteria and this thesis can serve as a model

for future endeavors into computationally modeling psychological phenomena.

• Implemented a naive, purely statistical, behavior-level model of developmental

causal reasoning, recreating the experimental setup and results of the Schulz et

al. experiment [10].

• Argued that the behavior-level model accurately describes the behavior of the

children, but does explain the behavior or how it develops.
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• Defined and evaluated various explanatory models, presenting the pros, cons,

and psychological plausibility arguments for each.

• Proposed an explanation-level cognitive theory which explains how children’s

cross-domain casual reasoning ability develops over time. I expressed this theory

in terms of ability to integrate statistical information and ability to include

cross-domain cause-and-effect.

• Abstracted the explanation-level theory into a switch-like mechanism and showed

how it predicts a novel type of causal reasoning behavior.

• Implemented a psychologically plausible computational model of the explanation-

level theory using a story understanding approach that leverages the Genesis

system’s rule and concept pattern matching abilities.

• Demonstrated that the model adequately reproduces the results from the Schulz

et al. study [10] and takes it to another level by explaining the behavior in

terms of psychologically plausible story understanding mechanisms such as rule

inference and concept pattern matching.
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Appendix A

Stories

Start story titled "Bambi Story".

Bambi likes to prance and run in lots of different places.

Running is fun for Bambi.

//Then on Monday morning, Bambi runs in the pine grove.

Then, the time is Monday morning.

Bambi runs in the pine grove.

Bambi gets excited.

Bambi runs in the cattails.

Bambi experiences itchy spots. // on his legs. removed for effect matching purposes

Bambi does nothing. // placeholder hack for mental model 2 not transmitting the last sentence.

//Then on Monday afternoon, Bambi runs in the pine trees. //new line cedar trees

Start story titled "afternoon".

Then, the time is Monday afternoon.

Bambi does not experience itchy spots.

Bambi runs in the pine trees.

Bambi plays on the rope swing.

Bambi feels great.

Bambi does not experience any itchy spots.
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Bambi does nothing.

//Then on Tuesday morning, Bambi gets excited.

Start story titled "Tuesday morning".

Then, the time is Tuesday morning.

Bambi gets excited.

Bambi runs in the cattails.

Bambi runs in the grass.

Bambi experiences itchy spots. // on his legs. removed for effect matching purposes

Bambi does nothing.

//Then on Tuesday afternoon, Bambi reads a book. //new line - and

Start story titled "Tuesday afternoon".

Then, the time is Tuesday afternoon.

Bambi reads a book.

Bambi runs in the rock_bed. //through rock bed

Bambi feels great.

Bambi does not experience any itchy spots.

Bambi does nothing.

//Then on Wednesday morning, Bambi runs in the marsh.

Start story titled "Wednesday morning".

Then, the time is Wednesday morning.

Bambi runs in the marsh.

Bambi gets excited.

Bambi runs in the cattails.

Bambi experiences itchy spots. // on his legs. removed for effect matching purposes

Bambi does nothing.

//Then on Wednesday afternoon, Bambi runs in the apple orchard. //new line - and
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Start story titled "Wednesday afternoon".

Then, the time is Wednesday afternoon.

Bambi runs in the apple orchard.

Bambi plays with a truck. //through apple... with his toy truck

Bambi feels great.

Bambi does not experience any itchy spots.

Bambi does nothing.

//Then on Thursday morning, Bambi gets excited.

Start story titled "Tursday morning".

Then, the time is Thursday morning.

Bambi gets excited.

Bambi runs in the cattails.

Bambi runs in the leaves.

Bambi experiences itchy spots. // on his legs. removed for effect matching purposes

Bambi does nothing.

//Then on Thursday afternoon, Bambi plays jump rope. //new line - and

Start story titled "Thursday afternoon".

Then, the time is Thursday afternoon.

Bambi plays jump rope.

Bambi runs in the sand.

Bambi feels great.

Bambi does not experience any itchy spots.

Bambi does nothing.

//Then on Friday morning, Bambi runs in the bushes.

Start story titled "Friday morning".

Then, the time is Friday morning.

Bambi runs in the bushes.
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Bambi gets excited.

Bambi runs in the cattails.

Bambi experiences itchy spots. // on his legs. removed for effect matching purposes

Bambi does nothing.

//Then on Saturday morning, Bambi gets excited.

Start story titled "Saturday morning".

Then, the time is Saturday morning.

Bambi gets excited.

Bambi runs in the cattails.

Bambi runs in the grass.

//Bambi gets excited.

//Bambi runs in the cattails.

Bambi experiences itchy spots. // on his legs. removed for effect matching purposes

Bambi does nothing.

//Then on Saturday afternoon, Bambi gets his hair brushed. //new line - and

Start story titled "Saturday afternoon".

Then, the time is Saturday afternoon.

Bambi gets his hair brushed.

Bambi runs in the blueberry_patch. //through blueberry patch

Bambi feels great.

Bambi does not experience any itchy spots.

Bambi does nothing.

//Then on Sunday morning, Bambi runs in the garden. //through garden

Start story titled "Sunday morning".

Then, the time is Sunday morning.

Bambi runs in the garden.

Bambi gets excited.
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Bambi runs in the cattails.

Bambi experiences itchy spots. // on his legs. removed for effect matching purposes

Bambi does nothing.

//Then on Friday afternoon, Bambi runs in the playground. //new line - and

Start story titled "Friday afternoon".

Then, the time is Friday afternoon.

Bambi runs in the playground.

Bambi roller skates. //through playground

Bambi feels great.

Bambi does not experience any itchy spots.

Bambi does nothing.

Then, on the next day Bambi’s spots were all gone.

Have fun Bambi.

The end.

//Does bambi have itchy spots because bambi runs in the cattails or bambi runs in the pine grove

Start story titled "Bunny Story".

Bunny is a rabbit. Bunny is a girl.

// SHOW-AND-TELL --> SCHOOL FOR MATCHING PURPOSES

// This is Bunny.

Bunny is scared because next week she has to give school.

school makes Bunny scared.

//Then on Monday morning, Bunny thinks about school.
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Then, it is Monday morning.

Bunny thinks about school.

Bunny feels scared.

Bunny eats some cheese.

Bunny experiences nausea.

The end.

Start story titled "Monday afternoon".

//Then on Monday afternoon, Bunny ties her shoes. // and

Then, the time is Monday afternoon.

Bunny ties her shoes.

Bunny eats strawberries.

Bunny feels great. //! can’t parse !

Bunny does not experience nausea.

The end.

Start story titled "Tuesday morning".

//Then on Tuesday morning, Bunny eats a popsicle.

Then, the time is Tuesday morning. //split so can match...

Bunny eats a popsicle.

Bunny thinks about school.

Bunny feels scared.

Bunny experiences nausea.

The end.

Start story titled "Tuesday afternoon".

//Then on Tuesday afternoon, Bunny eats some toast. // and
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Then, the time is Tuesday afternoon.

Bunny eats some toast.

Bunny takes a bath.

Bunny feels great. //! can’t parse !

Bunny does not experience nausea.

The end.

Start story titled "Wednesday morning".

//Then on Wednesday morning, Bunny thinks about school.

Then, the time is Wednesday morning.

Bunny thinks about school.

Bunny feels scared.

Bunny eats French fries.

Bunny experiences nausea.

The end.

Start story titled "Wednesday afternoon".

//Then on Wednesday afternoon, Bunny plays bingo. // and

Then, the time is Wednesday afternoon.

Bunny plays bingo.

Bunny eats pasta.

Bunny feels great. //! can’t parse !

Bunny does not experience nausea.

The end.

Start story titled "Thursday morning".

//Then on Thursday morning, Bunny eats a muffin.
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Then, the time is Thursday morning.

Bunny eats a muffin.

Bunny thinks about school.

Bunny feels scared.

Bunny experiences nausea.

The end.

Start story titled "Thursday afternoon".

//Then on Thursday afternoon, Bunny eats some yogurt. // and

Then, the time is Thursday afternoon.

Bunny eats some yogurt.

Bunny brushes her teeth.

Bunny feels great. //! can’t parse !

Bunny does not experience nausea.

The end.

Start story titled "Friday morning".

//Then on Friday morning, Bunny thinks about school.

Then, the time is Friday morning.

Bunny thinks about school.

Bunny feels scared.

Bunny eats some soup.

Bunny experiences nausea.

The end.

Start story titled "Friday afternoon".

//Then on Friday afternoon, Bunny plays on the monkey bars. // and
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Then, the time is Friday afternoon.

Bunny plays on the monkey bars.

Bunny eats a banana.

Bunny feels great. //! can’t parse !

Bunny does not experience nausea.

The end.

Start story titled "Saturday morning".

//Then on Saturday morning, Bunny eats a carrot.

Then, the time is Saturday morning.

Bunny eats a carrot.

Bunny thinks about school.

Bunny feels scared.

Bunny experiences nausea.

The end.

Start story titled "Saturday afternoon".

//Then on Saturday afternoon, Bunny eats some tofu. // and

Then, the time is Saturday afternoon.

Bunny eats some tofu.

Bunny builds a snowman.

Bunny feels great. //! can’t parse !

Bunny does not experience nausea.

The end.

Start story titled "Sunday morning".

//Then on Sunday morning, Bunny thinks about school.
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Then, the time is Sunday morning.

Bunny eats a sandwich.

Bunny thinks about school.

Bunny feels scared.

Bunny experiences nausea.

The End.

Start story titled "Monday morning 2".

Then the next day Bunny gave school.

She did very well and everyone clapped!

Hurray for Bunny. //! can’t parse !

The End.

70



Bibliography

[1] Elizabeth Baraff Bonawitz, Tessa J.P. van Schijndel, Daniel Friel, and Laura
Schulz. Children balance theories and evidence in exploration, explanation, and
learning. Cognitive Psychology, 64:215–234, 2012.

[2] G. Dehaene-Lambertz and E.S. Spelke. The infancy of the human brain. Neuron,
88(1):93–109, oct 2015.

[3] Clark Glymour, Choh Man Teng, and David Danks. Bayesian ptolemaic psy-
chology. 2015.

[4] Hyowon Gweon and Laura Schulz. 16-month-olds rationally infer causes of failed
actions. Science, 332(6037):1524, 2011.

[5] Linda Hermer-Vazquez, Elizabeth S. Spelke, and Alla S. Katsnelson. Sources of
flexibility in human cognition: Dual-task studies of space and language. Cognitive
Psychology, 39(5):3–36, aug 1999.

[6] Boris Katz. Annotating the world wide web using natural language. In Proc. 5th
RIAO Conference on Computer Assisted Information Searching on the Internet
(RIAO ’97), 1997.

[7] Rachel W. Magid, Mark Sheskin, and Laura E. Schulz. Imagination and the
generation of new ideas. Cognitive Development, 34:99–110, 2015.

[8] Jo Marchant. A journey to the oldest cave paintings in the world ... Smith-
sonian magazine website: http://www.smithsonianmag.com/history/journey-
oldest-cave-paintings-world-180957685/, January 2016. Accessed October 24,
2016.

[9] Marvin Minsky. Negative expertise. International Journal of Expert Systems,
7(1):13–19, 1994.

[10] Laura Schulz, Elizabeth Baraff Bonawitz, and Thomas L. Griffiths. Can being
scared cause tummy aches? naive theories, ambiguous evidence, and preschool-
ers’ causal inferences. Developmental Psychology, 43(5):1124–1139, 2007.

[11] Aaron Sloman. The Computer Revolution in Philosophy: Philosophy Science
and Models of Mind, chapter 2.5.5. The Harvester Press Limited, online:

71



http://www.cs.bham.ac.uk/research/projects/cogaff/crp/ edition, 1978. Ac-
cessed May 3, 2018.

[12] Patrick H. Winston. System building using genesis’s box-and-wire mechanism.
http://groups.csail.mit.edu/genesis/Documentation/wire.pdf, October 2014.

[13] Patrick H. Winston. How to speak genesese.
http://groups.csail.mit.edu/genesis/Documentation/Genesese.pdf, June 2017.

[14] Patrick H. Winston and Dylan Holmes. The gene-
sis manifesto: Story understanding and human intelligence.
https://courses.csail.mit.edu/6.S079/pdf/manifesto.pdf, May 2018.

[15] Patrick Henry Winston. The strong story hypothesis and the directed perception
hypothesis. In Proc. of the AAAI Fall Symposium on Advances in Cognitive
Systems. Association for the Advancement of Artificial Intelligence, November
2011.

72


